Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

نویسندگان

  • Chao Yan
  • Qianru Liu
  • Jianzhi Gao
  • Zhibo Yang
  • Deyan He
چکیده

Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge-charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionally strain-graded nanoscoops for high power Li-ion battery anodes.

Lithium-ion batteries show poor performance for high power applications involving ultrafast charging/discharging rates. Here we report a functionally strain-graded carbon-aluminum-silicon anode architecture that overcomes this drawback. It consists of an array of nanostructures each comprising an amorphous carbon nanorod with an intermediate layer of aluminum that is finally capped by a silicon...

متن کامل

Ultrafast electrochemical lithiation of individual Si nanowire anodes.

Using advanced in situ transmission electron microscopy, we show that the addition of a carbon coating combined with heavy doping leads to record-high charging rates in silicon nanowires. The carbon coating and phosphorus doping each resulted in a 2 to 3 orders of magnitude increase in electrical conductivity of the nanowires that, in turn, resulted in a 1 order of magnitude increase in chargin...

متن کامل

Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries.

An amorphous phosphorus/carbon nanocomposite demonstrates a reversible 3-Li storage capacity of 2355 mAh g(-1) with an excellent capacity retention of 90% over 100 cycles and a superior power capability with 62% of its capacity realizable at a very high rate of 8000 mA g(-1), possibly serving as a high capacity and high rate alternative anode for next-generation Li-ion batteries.

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Role of Nitrogen Doped Graphene for Improved High Capacity Potassium Ion Battery Anodes.

Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017